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Abstract. We show that in supervised learning from a supplied data set Bayesian model
selection, based on the evidence, does not optimize generalization performance even for
a learnable linear problem. This is demonstrated by examining the finite size effects in
hyperparameter assignment from the evidence procedure and the resultant generalization
performance. Our approach demonstrates the weakness of average case and asymptotic
analyses. Using simulations we corroborate our analytic results and examine an alternative
model selection criterion, namely cross-validation. This numerical study shows that the cross-
validation hyperparameter estimates correlate more strongly than those of the evidence with
optimal performance. However, we show that for a sufficiently large input dimension the
evidence procedure could provide a reliable alternative to the more computationally expensive
cross-validation.

1. Introduction

The problem of supervised learning, or learning from examples, has been much studied
using the techniques of statistical physics (see e.g. Krogh and Hertz 1992, S8eri®92,
Watkin et al 1993). A major advantage of such studies over the usual analytical approach in
the statistics community is that one can examine the situation where the frag}iofthe
number of examplesp| to the number of free parametdi®) is finite. This contrasts with
the asymptotic (inx) treatments found in the statistics literature (see e.g. Plutoetsél
1994, Stone 1977a, b, Shao 1993, Gelfand and Dey 1994). However, one drawback of the
traditional statistical physics approach is that it is based on the thermodynamic limit where
one allowsN and p to approach infinity whilst keeping constant. Naturally this limits
the applicability of these theoretical results to the real world. In this paper we address the
problem by calculating first order corrections to the thermodynamic limit, that is we explore
finite size effects. Finite size effects in supervised learning have been studied previously
by Sollich (1994) and Barbest al (1995). Before discussing the main focus of our study
a brief introduction to the supervised learning paradigm is in order.

In this context one is presented with a set of d&ta= {(y;(z,),x,) : . =1...p}
consisting ofp example pairs of an otherwise unknowsacher mapping denoted by the
distribution P (y,|«). This notation accommodates, for example, teachers with deterministic
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outputs corrupted by noise. Furthermore, we assume tha¥thgimensional input space

is sampled with probabilityP (x) and thus, the data set is generated with probability
P(D) = ﬁ:lP(yflwﬂ)P(mM)' The learning task is to use the ddafato set theN
parametersw, of some model (or student), with output(x), such that itearns to mimic

the underlying mapping as closely as possible on all inputs drawn from the distribution
P(x) (i.e. not simply those in the training sBY). A popular measure of this performance is

the generalization errorwhich we define formally in section 2.2. We regard minimization

of this error, to which one does not have direct access, as the principal goal of the learning
or training process. The question is then how to conduct training so as to obtain the best
possible performance. One frequently used approach consists of minimizing a weighted
sum, BE, (D) + yC(w), of the quadratic error of the student on the examples(D),

and somecost function C (w), which penalizes over-complex models. Provideds non-

zero this serves to alleviate the problem afer-fitting of noisy data which can degrade
performance. It is the setting of the, so-called, hyperparamgteasd y which we will
examine in this presentation.

If stochastic gradient descent is used to minimize the composite cost function,
BE(D) + yC(w), one obtains a Gibbs distribution of students (i.e. the post training
distribution over the parametets) (Seunget al 1992). If we wish to make a prediction on
a novel input using the average, or the maximum, of this distribution then this prediction
depends solely on the hyperparameters. Thus, the selectignaofl y can be regarded
as a model selection. In practice, since a decision must be based only on the training data
there are essentially two choices in terms of hyperparameter assignment. Firstly one can
attempt to estimate the generalization error (e.g. by cross-validation (Stone 1974)) and then
optimize this measure with respect to the hyperparameters. However, such an approach
can be computationally expensive. Secondly, one can optimize some other measure and
hope that the resulting assignments produce low generalization error. In particular, MacKay
(1992) advocates a quantity derived from Bayesian statistics, termeslithence as such
a measure. In the main we will explore this latter approach, defining the evidence in
section 2.1.

Model selection based on the evidence, in tearnable case of a linear student
and teacher, has been studied by Bruce and Saad (1994) in the thermodynamic limit.
Their results show that optimizing the average, over all possible data sets, of the log
evidence simultaneously with respect to both hyperparameters optimizes the average
generalization error. In amnlearnable scenario Marion and Saad (1995) show that in
the thermodynamic limit hyperparameter assignment from the average log evidence does
not optimize performanceSelf averagings said to hold if the variance of relevant quantities
vanishes as the thermodynamic limit is approached. Since both these studies were conducted
in the thermodynamic limit and the self averaging property was assumed the analyses were
average case. In this paper we show that self averaging does indeed hold in relation to
model selection based on the evidence in the learnable linear case. However, we will
explore the optimality of the evidence in a system of finite size where the variance over
data sets is non-vanishing. Furthermore, rather than conduct an average case analysis we
seek to examine hyperparameter assignnbased on individual data sets

Our standpoint can be summarized as follows. In any real experiment a single set of
data is available for training and one seeks to optimize performance based on this data
set alone. The optimal policy (e.g. those hyperparameter assignments which minimize the
generalization error) will fluctuate from data set to data set, as will policies based on the
evidence and the cross-validation error. What is of interest is how close our chosen strategy
is to the optimal for the particular set of data in question. Itis clear that average case analyses
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and measures of average performance do not reveal this. Thus, in section 2.2 we define data
dependent measures of performance and then subsequently explore the performance of the
evidence assignments in relation to them. In addition, we also briefly consider the average
case showing that such an analysis is in general highly misleading. However, we note that
in the thermodynamic limit, if self averaging holds, then both approaches are equivalent.
The remainder of the paper is organized as follows. In the next section we review the
evidence framework and the performance measures we will deal with. In section 3, we
write down the evidence and the performance measures for the learnable linear case. The
problem of consistency, that is the behaviour in the limit of large amounts of data, is then
explored along with an average case approach. In addition, employing some of the results
of Sollich (1994), we demonstrate that, for largye the variances, over data sets, of the
evidence and generalization error ar¢l@QV), in other words that self averaging holds.
In section 4 we avoid the average case approach examining hyperparameter assignment
from the evidence in relation to the optimal hyperparameters using finite size corrections
to the thermodynamic limit. We corroborate these results with numerical simulations of
small systems. The impact of these assignments on performance is studied in section 5.
In particular we estimate a lower bound on the system size necessary for the evidence
procedure to give reliable results. Also in terms of performance, we explore the relative
importance of fluctuations in the optimal and in the evidence procedure assignments. A
numerical study of a low dimensional system in section 6 allows a comparison of model
selection based on the cross-validation error and on the evidence. Finally we summarize
our main results in section 7.

2. Objective functions

2.1. The evidence

Since E,, (D) is the sum squared error then, if we assume that our data are corrupted
by Gaussian noise with variance/2B, the probability, orlikelihood of the data D)
being produced given the model parametarsand 8 is P(D|8, w) «x € AP The
complexity cost can also be incorporated into this Bayesian scheme by assumangriteé
probability of a rule is weighted against ‘complex’ rulg3(w|y) o« 7™, Multiplying
the likelihood and the prior together we obtain the post-training or student distribution,
P(w|D,y, B) «x e AED)=rCw) = Ag noted earlier, stochastic minimization of the composite
cost function also gives rise to this distribution. Indeed, Buntine and Weigend (1991) refer
to this process aBayesian backpropagation

The evidence itself is the normalization constant for the post-training distribution

P(Dly.B) = /Hdw,- P(D|B. w)P(w|y). (2.2)
J

That is, the probability of (or evidence for) the data 6BY given the hyperparametefs

andy. The evidence can thus be calculated from the datal¥eslone. Throughout this

paper we refer to thevidence proceduras the process of fixing the hyperparameters to

the values that simultaneously maximize the evidence for a given data set. Thus, although
the Bayesian framework outlined here envisages the hyperparameters as defining the whole
distribution of input—output pairs, the assignments from the evidence procedure will depend
on the data set at hand. Indeed, one could regard this procedemapmscal Bayes(see

e.g. Berger 1985) where, to some extent, the data are allowed to influence the choice of
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prior. In addition, we note that this is the way in which the evidence procedure is used in
practice (Mackay 1992).

2.2. The performance measures

In contrast to the evidence, the performance measures we review here cannot be calculated
from the data alone. Before proceeding we will introduce the notdtiap)) »(.) to denote
the average of the quantity(z) over the distributionP(z). However, we will use the
shorthand-),, to mean the average over the post training distribufaiw|D, y, 8). Thus,
the average student outputatconditioned on the training dat®, is (y,(x)).

As the principal performance measure we choose the expected squared difference over
the input distributionP (x) between the average student and the average teacher. That is,
the data-dependent generalization error

€(D) = (5 (®)) P12y — (V5 (T))w)?) P (e - (2.2)

If we were toaverage over all possible data set$ fixed size then this would correspond
to the generalization error studied by Bruce and Saad (1994) and Krogh and Hertz (1992).
The question arises as to what one means by optimal procedure. As noted previously, in
the context of a real supervised learning experiment we are concerned with the performance
based on the actual data set available and not on the average performance. Thus, the optimal
policy is that which minimizes the data dependent generalization error and our focus will be
on the performance of the evidence procedure in relation to this. However, in section 3.1
we will consider an average case approach. Further, in section 5 we will also consider the
effect of defining the optimal hyperparameter assignment in terms of the avef&®) pp)
whilst using the data dependent evidence assignments. This will enable us to assess the
relative importance of fluctuations in the optimal and the evidence assignments.

Another feature we can consider is the variance of the student outgu, over the
student distribution({y; () — (ys(x))w}?)w. pz)- Adapting the definition of Bruce and Saad
(1994) we define thelata dependentonsistency measure as

8:(D) = ({ys(@®) — (35 (X))} ), Py — €5 (D). (2.3)

We regards.(D) = 0 as optimal since we can then estimate our expected efy@),

from the variance of our student output, which in principle we can calculate if we could
estimate the input distribution. Indeed, Krogh and Vedelsby (1995) suggest using unlabelled
data to estimate the variance over the ensemble of students, albeit in a slightly different
context. Again note that we are principally concerned with the optimal procedure based on
the training data available and not on the average over all such sets.

3. Finite system size

In this section we consider a finite system si¢eexamining the large limit and showing

that in the learnable linear case under consideration in this paper the evidence procedure is
unbiased in a particular sense. We then explore the approach to the thermodynamic limit
demonstrating that the system is self averaging. However, initially we must calculate the
evidence and the performance measures.

Since the student is linear with outputxz) = w - «/+/N, the number of parameters
equals the dimension of input spadé, = N. We also assume that the teacher mapping is
linear, parametrized by the weight vectof, and corrupted by zero mean Gaussian noise of
varianceo?. Thus, P (y|@,) « exp[—(y;' —w°-x,/v/N)?/20?]. Further, we assume ()
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is V(0, 0,)t and adopt weight decay as our regularization procedure, titais = w'w.

In this case we can explicitly calculate the evidence, or rather the normalized log of the
evidencef (D)= —1/N In P(D|A, B), where we have introduced the weight decay parameter
L =y/(Ba?). We can write the quantity‘ (D) which is analogous to a free energy as

1 A

f(D) = —3 In— — % InE — In2— — Indetg—i—yn—i—ﬂ(koxaw +n'T'n +a.,)

bid b4

(3.1)

where

O 2w ga,

wo N262 N G NJN
O’XZ)\.Z(’U)O)TQ’U)O
oy = —
N

and

1 p

Herep andv index thep patterns) is the identity matrix inV dimensionsNo2 = w®- w°
and thep dimensional noise vectat has components drawn froX (0, o). The terma,,
does not fluctuate with the noise but only with the inpats

The generalization error and the consistency can be calculated/ft@m by averaging
appropriate expressions over the input distributid@). The generalization error is given

by

€,(D) = n"An+z-n+ ac, 3.2)
where
1 10g 2\ 0.7 0
A;w = _NZO'XZ(CCM) ﬁmv iu = Nf(w ) 7mv
and
’\ZUX 0799 o
e, = —T( ) aw

Finally, the consistency is
1
6.(D — D). .
(D) = ﬂNtrg €:(D) (3.3)

We note here that the generalization error depends only on the weight dedhys in
the remainder of this paper we refer to the optimal weight decgy(D) as that which
minimizes €,(D). Similarly, for fixed weight decay the optimal inverse temperature,
Bop: (D), ensures thai. (D) = 0 and thus that the variance of the student distribution is equal
to the generalization error. We denote the hyperparameters that simultaneously maximize
the evidence as,,(D) andB., (D). Thus, the ternoptimal refers to the optimization of, or
with respect to, the performance measures wigildtience optimatefers to maximization
of the evidence.

t WhereN (z, o) denotes a normal distribution with meanand variances2.
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3.1. Consistency and unbiasedness

Firstly we consider the question of asymptotic consistency, that is, we examine the free
energy, f (D), and the generalization error in the limit of large numbers of data (i.e. as
p — oo with N fixed). This term is not to be confused with the consistency measure defined
above. Using the fact, shown in appendix A, that, for lapge;; = 8;;N/p + O(1/p*?)

we can find the asymptotic evidence optimal hyperparameter assignments, namely

. 1 . 1
p||—>moo Aev (D) =Xo+ o) (ﬁ) and pkrl]o IBEU (D) = IBO +0 <\/ﬁ) (34)

where the noise-to-signal ratiy = 0?/(c202) and o = 1/(20%). In addition it can be
shown that, to first order ip~1, the generalization error is independentiofAs we shall
see later in the context of larg€ this insensitivity of the generalization error to the value
of the weight decay is associated with a divergence in the variance of the optimal weight
decay as the number of examples grows large.

That the generalization error is independent of the weight decay for jarueplies
that any scheme for setting., and in particular the evidence assignments, will achieve
optimal performance asymptotically (i.e. generalization error tends to zero irrespective of
A). However, as we shall see in section 4 this does not imply that the evidence assignments
correspond to the optimal hyperparameters. Rather, it is a reflection of the fact that, for any
weight decay setting, our linear studentnean square consistefgee e.g. Stone 1977b)
when the teacher is also linear.

For this reason, instead of looking directly at the generalization error when assessing
the performance of the evidence assignments we will focus on the fractional increase in
generalization error from the optimal incurred by their use. That is on

Eg ()"ev» D) - Eg ()\opts D)
€g(Aopr» D) '

Similarly the fractional error in estimating the generalization error from the variance of the
student distribution is

(3.5)

Ke, (Aev, D) =

(SC()\‘EUS ﬂevs D)
K (»()"evs IBevv D) = = - (36)
' €5 (hev: D)
In section 5 we examine the behaviour of bath(D) and s, (D) in the thermodynamic
limit.
However, before considering this regime we examine average case behaviour. Using
the result of appendix B it can be shown that

(6(D)) ppy = 0%Gay + 28, Gap(0? — Ao2a?) (3.7)

where the response functio6,, = (trg)pmp) is unknown in general. The average
generalization error is clearly optimized by= X,. Similarly, it can be shown that the
average consistency is optimized Iy = By whilst the resulting average free energy,

f = {f(D))pw), is extremized by = Ao and 8 = Bo. This corresponds to the average
case result obtained for the thermodynamic limit by Bruce and Saad (94) but isoradill

N and p. However, we are not able to explore the behaviour in more detail in this regime
since we can only calculaig,, explicitly in the region of the thermodynamic limit. Thus,

the average case analysis shows that the evidence procedure is unbiased in the sense that
maximization of the average evidence optimizes average performance. However, we now
show that the fluctuations around this average optimum performance become increasingly
important as the system siz¥, decreases.
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3.2. Self averaging

Using the result of Sollich (199#that the variance of /N is O(1/N?) one can calculate
the variance, over possible realizations of the data set, of the free enfg@y,obtaining

Var(f (D)) = 20*(tr(T'T)) p(anp=t._pp + 2 Y Y)) par =t pp
+,32<ae2v>P([m#:u:l...p}) - ﬂ2<aev>2P({ml‘-:/1:l,“p])' (3-8)

Here we have explicitly performed the noise average and the remaining average over
the input points is with respect t8({«* : © = 1... p}). As shown in appendix C, it is
readily verified thattr(I'T")) p(ar:pu=1...p}), (tr(yTy))p({mu;M:L,,,,}) and the variance af,, are
O(1/N) as we approach the thermodynamic limit. Thus, the variance of the free energy is
O(1/N), i.e. it is self averaging. Similarly, it can be shown that the generalization error
and consistency measure are also self averaging. This means that in the thermodynamic
limit the behaviour exhibited by the system for any particular data set will correspond to
the average case behaviour, that is the fluctuations around the average vanish. Thus, we
see that the average case analysis of Bruce and Saad (1994) corresponds to theargse for
particular data setbecause their results were obtained in the thermodynamic limit.

4. Data dependent hyperparameter assignment

Having now established, in addition to the self averaging, that the evidence procedure is
unbiased and consistent in a crude sense we now wish to examine the finite system behaviour
for data sets of finite size. This is clearly the regime of interese&b world applications

since one is then in the business of optimizing performance based on the supplied data
set. To obtain the hyperparameter assignments made by the evidence procedure we must
simultaneously solvé, f (D) = 0 anddg f (D) = 0, wheredy f = 9f/960. We can linearize

these equations, close to the thermodynamic limit, by expanding avouna, andg = fo.

Doing so we obtain

Ao\ [ 02F 3ﬂaxf)_1<3xf>
(Aﬁ@) - <3A3ﬁf 02 f S ) @4

where the evidence optimal hyperparametersiar€D) ~ Ao + AAr.,(D) and B,, (D) ~
Bo + AB.,(D). In the notation adopted here the data dependence is implicit and the right-
hand side is evaluated at= Ao and 8 = fo.

Similarly, we can expand the true optimal hyperparameters about the thermodynamic
limit, obtaining A,p: (D) & Xo + AL,y (D) from the generalization error with

d
Ahgpr = <_ ;68) . 4.2)
8)\. Gg X0,B0

Since we regard the optimal consistency as zero (see section 2.2) we ghiain) ~
,30 + Aﬂupt (D) where

(€5(D) — (6,(D))o) trg
2N (€,(D))3
and the notatior{)y denotes the value of the functidnin the thermodynamic limit.

The (co)-variances of these quantities argdV); an example calculation is outlined
in appendix D. Figure 1 shows, to first order M, the scaled variancgsn the evidence

A/30pt (D) = (43)

1 Alternatively one can show this result using diagrammatic methods.
{ i.e. N times the true variances
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Figure 1. The scaled variance in the optimal weight ded@r,(ko,,,), for various noise levels,
(i) Ao = 0.04, (ii) 20 = 0.25 and (iii) Ao = 0.44, is shown in&). Notice the linear divergence in
« which corresponds to our result in section 3.1 that, for sufficiently largte generalization
error is independent of. The variance in the evidence optimal weight dec@r(kev), is
shown, in p), for the same noise levels. The(D«) decay of this quantity is a reflection of
the fact that for largey the evidence optimal weight decay, (D) = Xo.

optimal weight decayf/ar(kev), and that in the true optimal weight decaﬁr(xop,), for
various values ohg . In the limit of largea we find

222 A
Var(he,) & a—A‘;(l + 2%0) and Varhp) ~ %a. (4.4)

The asymptotic @L/«) decay of the former reflects the fact that, as discussed in section 3.1,
liMg_ 00 Aew (D) = Ag. Similarly, the divergence of the latter is indicative of the insensitivity
of the generalization error to the weight decay for lasgeThe divergence of both curves
for small « is of order Q1/(N«)) and, in fact, forp = 1 it can be shown analytically
that these quantities are(D. In the limit of zero noise we find that the variance Jqf
diverges fore < 1 and is zero forx > 1. However, in this limit of zero noise the variance
of the optimal weight decay tends to zero irrespectivexofSince, at least to first order,
the average of\A,,, is zero this means that optimal weight decay is zero in the limit of no
noise. Thus, if there is no noise the evidence procedure can only set the weight decay with
confidence fore > 1, whilst the optimal policy is to accept the data completely foroall
(i.e. Ao = 0).

A second feature we consider is the average separation between the evidence assignment
of the weight decay and the optimal,

I er = Rop I = ((hew (D) = 2ot (D)P) p(D).- (4.5)

As one would expect, this average separation increases with the noise. However, in the
limit of zero noise whilst|A,, —Aap,||2 is zero fora > 1 we find that it diverges for < 1.

This divergence is linked to the divergence in the evidence assignment of the weight decay
discussed in the preceding paragraph. In the limit of large data sets the average distance
between the optimal weight decay and the evidence assignment diverges linearly, indeed
for large o we find that

[ hew — Aope 12 2 Var(hop,). (4.6)

Thus, we see that this divergence is caused by the fact that, whilst the evidence assignment
becomes ever closer tdy, the variance, over data sets, of the optimal regularization
parameter diverges.
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C(/\ev, /\opt) C(ﬂev, ,Bopt)
] === (i) 1.0
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Figure 2. The correlation between the optimal weight decay and the evidence optimal weight
decayC (Aey, Aopr) is shown, in &), for (i) Ao — 0.0, (ii) 1o = 0.01, (iii) 2o = 1 and (iv)iro = 4.

(b) shows the correlation between the optimal inverse tempergtyreand the evidence optimal

Bev for (i) 2o — 0.0, (ii) Ao = 0.025, (iii) 1o = 1 and (iv) 1o = 16.

Finally we examine the normalized correlation betwggiiD) andi,p; (D), C (Aey, Aop:)
and that betweers,, (D) and B,/ (D), C(Bev, Bop:) to order Q1) as shown in figure 2.
The normalized correlation between two fluctuating quantiti€é®) and k(D) is written
C(h(D), k(D)) = ((hk)pp)y — (h)pD) (k) pp))/(Var(h) Var(k))Y/2. For smalla the non-
monotonic behaviour o€ (A.,, 1,,) is a reflection of the fact, discussed above, that the
variance in the evidence assignment diverges for small noise whilst that of the optimal
tends to zero. As the noise level increases(Ma) reduces and Vék,,,) increases causing
the correlation to first increase and then decrease as a functiag. of~or zero noise
C(Aev, Xopr) tends to zero for alke since the optimal parameter does not fluctuate in this
limit. The behaviour ofC (.., B,p:) is more straightforward. For small this correlation
reduces monotonically with increasing. In the limit of zero noiseC (8., Bop) = 1 for
a < 1 and is zero otherwise. The behaviour in the regior: 1, where the variance of
both 8,,; and 8., diverge for small noise level is indicative of the fact that, for this case,
in the thermodynamic limit neither the consistency nor the evidence is dependent on the
inverse temperatures.

Finally, in the largex limit we have

) /2o
M CGheys hopr) = = o 4.7
Jim C(hev, dop) ot 1 (4.7)
and
Jim C(Bev. Bop) ~ 43502, (4.8)

Thus, for large noise the asymptotic correlation between the evidence and the optimal weight
decays tends te-1 whilst for small noise it tends to zero. In contr&s{s.., B.p:) invariably

tends to zero. In general then, to ordefl@QV) the evidence assignments correlate rather
poorly with the optimal assignments.

When defining the evidence procedure, we could have chosen to optimize the evidence
with respect to each of the hyperparameters whilst holding the other fixed rather than
simultaneously w.r.t. both. In the thermodynamic limit, in the linear case, we find that the
evidence assignments are optimal only in the case where we simultaneously minimize the
free energy w.r.t. to both hyperparameters (Bruce and Saad 1994). This was the motivation
for studying the latter case here. However, we briefly note that if wesfix= B, and



5396 G Marion and D Saad

optimize the evidence w.r.t. the weight decay only we are free to expari®) aboutig

as before. In this case we find that, in analogy to the thermodynamic limit, this assignment
is less correlated with the optimal than in the situation we have been discussing where we
optimize the evidence simultaneously with respect to both hyperparameters.

To summarize, we note that our results in this section are in stark contrast to the average
case result of section 3.1 and reveal the inadequacies of the latter approach. In addition,
despite mean square consistency the evidence assignments are in fact far from the optimal
values both asymptotically and for finite Indeed, in section 5 we will see that this has a
deleterious effect on performance.

4.1. Simulations

To qualitatively corroborate our results we performed simulations of one-dimensional linear
perceptron students and teachers. In these simulations we generated random data sets and
found the evidence procedure and the true optimal hyperparameter assignments. Then
by averaging over many such data sets we calculated the variances and correlations of
these parameter assignments. Some results from these simulations are shown in figure 3.
Figure 3@&) shows the variance of,,; and ofA., versus the number of examplgs, in

this case. They show qualitative agreement with the la¥geesults of figure 1, with the
variance of,,, diverging linearly for largep whilst that of., falls off with p. Figure 3p)

shows the correlation betweey,, andi,,. These simulation results demonstrate that there

is a region of positive correlation for a small number of examples and that as the noise
reduces, so does the level of the (anti)- correlation.

Var(\) C (i\:,,, Aopt)

-
00 \{Ll'l‘!lrl’!.r{

Figure 3. One-dimensional simulation resultsa)(shows the variance in the optimal weight
decayi,p; (full curve) and that in evidence optimal, (chain curve) both fong = 1.0. The

latter curve has been scaled by a factor of 0.01 for ease of presentation and standard error bars
are shown. Qualitatively, both curves show similar characteristics to the theoretical curves of
figure 1. For largetp the variance oh,,, continues to diverge linearly. Irb), the correlation
between the optimal weight decay and the evidence optimal weight d&@ay, 1,,;) is shown,

for Ao = 0.01 (full curve) andig = 1 (chain curve).

A better understanding of this behaviour is to be had by examining the histogrammed
samples, over different data sets, of the evidence and the optimal assignments. For a small
number of exampless, the distribution of evidence assignments looks qualitatively the same
as that of the optimal assignments. Thus, there are many occasions avherel 1,,, are
coincident and the correlation between them is positive although as we can see in figure 3
the variances in the assignments are large.pAgows the evidence assignments begin to
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cluster around.q as by our consistency results they must for lapgelThe mean of.,, thus

tends toig and its variance decays in accord with our thermodynamic results. However,
as p grows the distribution of the optimal assignment remains similar to its smédkrm

but the variance irk,,, becomes larger also in accord with our theoretical results. Given
the differences between these two distributions it is hardly surprising that the correlation
between the two corresponding hyperparameter assignments is not positive in this region.

5. Effects on performance

We now examine the effects on performance of these sub-optimal hyperparameter
assignments.  Firstly, for the generalization error to ordetl/Q'N) the optimal
performanceg, (1, D), and that resulting from use of the evidence proceduy@,.,, D),

are the same. However, to orde(1DN) they differ, thus we can write the correlation
between them, somewhat suggestively, as @(1/N). Unfortunately, we are unable to
calculate this correlation to @Q/N). Therefore, we examine the increase in error invoked
by use of the evidence procedure

Ae(D) = €4(Aev, D) — €4(Aops, D)

= Ahedr€g + 3A02 076, + 3A02 ,0%€, + O (;2) (5.2)
where the quantities in the second line are evaluated.athe degradation in performance,
Ae(D), is a fluctuating quantity (over data sets) and in order to estimate its typical magnitude
we calculate its average and variance. The average degradation in performance can be
written in terms of the average separation of the evidence weight decay assignment and the
optimal, as defined in equation (4.5). Thus, we find that

1
(Ae(D)) pp) = 3(32€g)0llAer — Aope I + O <Nz> : (5.2)

Whilst the calculation of this average is then straightforward, that of the variance is more
tricky. The variance is @/N?) and thus we would have to calculate the variance of
the response function ¢t/ N to this order. Instead, we simply calculate the variance over
the noise ignoring that over the inputs. Clearly, this will givéower boundon the true
variance. We also expect this to become increasingly tiglt geows since for zero noise
the fluctuations generated by the input variables vanishufer 1. Thus, to @1/N), a
lower bound on theypical error invoked by use of the evidence procedure is the average
degradation of equation (5.2) plus the square root of its variance over the noise.

In figure 4, to first order, we plot this typical errofAe)pp) + (Var(Ae))¥2, scaled
by N as a fraction of the optimal generalization error. This quantity, which is a scaled
estimate of the fractional degradation defined in equation (3.5), is devi@f”e(dgv). As
before the notatior: denotes the functio scaled byN. Figure 4 shows that use of
the evidence procedure results in a fractional degradation of significant magnitude for finite
system sizeN, and number of examples, This is true of the degradation itself and clearly
demonstrates the failings of the average case approach which, as we have seen, suggests
the evidence assignments are optimal in this case. Figure 4 allows one to determine a lower
bound on the typical fractional degradation for any system size. For exampl¥, #0000,
we see that the fractional errors shown in figure 4 will range between 0.01 and 0.29 and
for a larger-sized system the evidence procedure results in closer to optimal behaviour. In
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Figure 4. Scaled estimate of the fractional ervqy: for a system size oV dividing kéﬁ”(xev)

by N gives an estimate of the true fractional increase in error above the optimal incurred by
using the evidence procedure?ég"’(kﬂ,) diverges as.p — oo and ase — 0. For largea

;Zég‘”(kw) tends to YN and for small noise it diverges far < 1 (see text).

the largea limit we find that, for theaveragefractional degradation

1 2(Mo+1 1
<Keg()\ev)>P(D) = N + (12[70[) +0 (]VO{Z> . (53)

Note that the average relative degradati@g,(1..)) »(p), does not decay withr despite the

fact that the average degradation in performanee (D)) p(p), is itself O(1/aN). Thus,
although the evidence assignments are consistent in a mean square sense they are never
optimal even asymptotically. Furthermore, given the large fractional degradation associated
with the evidence for finitee and N (shown in figure 4) even this mean square consistency is

of questionable relevance in practice. If we consider the fluctuations, induced by the noise,

in the relative degradation we find that asymptotically they do not contribute, being of order
O(1/aN). Indeed, the fluctuations do not, in general, qualitatively change the behaviour of
the average fractional errofs., (1.,)) p(p), and the relative size of the fluctuation term as a
fraction of the typical error is most important for a mid-range- 2.

As the noise level increases so ddes (A..)) pp) Which is a reflection of the increasing
uncertainty im.., as shown in figure 1. In the zero noise limit, since we consider only the
variance induced by the noise, the fluctuation term vanishes in both the degradation and the
fractional degradation, for att. However, whilst the average degradatigne(i.,))p),
vanishes fore > 1 it diverges fora < 1. Thus, for zero noise the evidence procedure
gives optimal performance far > 1 but very poor performance far < 1. The fractional
degradation is more revealing in this limit, as we find thaf(i..)) »p) diverges when the
normalized number of examples,is less than one, but far > 1 we find

. la+1

)\l[I)TOO(GR (Aev))P(D) = No—1
showing that, for small noise, the evidence does not give optimal performance. We can
understand this behaviour if we consider the evidence weight decay assignments in the case
of zero noise. In the regioa < 1 the variance of.,(D) diverges as\g — 0 and thus
Aen (D) is ill-defined. This mirrors the phase transition found in the thermodynamic limit
by Bruce and Saad (1994). Furthermore, as we noted in the previous section, in the current
scenario we find that fax > 1 the variance/ar(i.,) — 0 in the limit of no noise and thus

lim
o—> 00

(5.4)
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the evidence weight decay assignment is zero fi.e.= Ao + Ai.,, — Ao — 0). When

there is no noise on the examples the optimal weight detgy, is zero for alle since

there is no danger of over-fitting. Thus, the average degradditan »py, and the average
separation between the evidence and optimal weight decays diverge<fdr and are zero
otherwise. This reflects the fact that fer< 1 we do not even have enough examples to
fix all the weights and certainly do not have enough to set the weight decay. However, for
a > 1 the evidence assignment is optimal. Thus, in the noiseless limit the performance of
the evidence is optimal fax > 1. However, this is not reflected in the average fractional
degradation, equation (5.4), because the optimal error approaches zercatrheateas

the degradation in performance. In other words for small noise levekand. the evidence
assignments are still sub optimal.

We have argued that the optimal policy is a function of the actual data set available and to
date we have largely focused on this definition. However, we now briefly discuss the effect
of re-defining the optimal policy as that which minimizes theeragegeneralization error.

As we saw in section 3.1 this is achieved by choosing the weight deeay.,. Thus, in

this case the optimal weight decay does not fluctuate over data sets and the error associated
with the evidence assignments will be due to fluctuationa (D) alone. Furthermore,

we have already seen that asymptotically the evidence assignment tekgls Itois thus

not surprising that we find the average relative degradation associated with the evidence
assignment when compared with the new ‘optimal’ generalization eptio, D)) p(p), IS

to first order ina~! O(1/N«) and in fact, (ke, (Aev)) pp) ~ 4ho/(Na). Thus, in this case

the evidence assignment is asymptotically optimal and it is clear that the fluctuations in
the optimal weight decay caused the asymptotic inconsistency reflected in equation (5.3).
In contrast, for this new optimal, at smallwe find qualitatively similar behaviour in the
fractional degradation to that displayed in figure 4. Moreover, fluctuations in the optimal
are relatively unimportant, in terms of performance loss, for smdlut grow rapidly with

the number of examples, dominating in the asymptotic regime as we have seen. These
results show that an average case definition of optimal is misleading especially in the data-
dominated regime.

Finally, we consider the error incurred in estimating the generalization error from the
variance of the post training distribution of students. If we use the evidence assignment of
the inverse temperaturg,, (D), then our error will be @/+/N); an order of magnitude
larger than the degradatione (1., D), itself. On average this vanishes but we can estimate
the typical size of the fluctuation by calculating the square root of its variance. Dividing
this by the true generalization error gives an estimate of the fractional esrpdefined in
equation (3.6). To first order this quantity, scaled ¥y and denoted by;"”, is plotted
in figure 5. In generalgy’” is much larger thak.”. For i, — 0 k" diverges whereas
ng” — 0 asg increases. That is, as the noise level increases the generalization error
becomes larger and we are able to estimate it, using the consistency criterion, to a greater
degree of accuracy when it is larger.

6. Comparison with cross-validation

Given that the evidence procedure is sub-optimal, it is natural to ask if another model

selection criteria could do better. Here we compare the evidence procedure with leave-one-
out cross-validation (see e.g. Stone 1974) using simulations of our one-dimensional system.
That is, we set the weight decay using the cross-validatory estimate and the evidence estimate
and compare the resulting generalization error to the optimal. The results, averaged over
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Figure 5. Scaled estimate of the fractional errqy: for a system size oV dividing ;ng_"’ by
NY/2 gives an estimate of the true fractional error in estimating the generalization error from
the variance of the student distributioﬁ)’}f‘” diverges asr — 0 and asig — O.
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Figure 6. One-dimensional simulation resultsa)(shows the correlation between the optimal
generalization error and those obtained using the evidence (full curve) and cross-validation

(chain curve) withio = 1.0.

(b) shows the fractional increase in generalization error

ke, (M) = (€g(A) — €g(hopr))/€g(Mops). A is set by the evidence (broken curve) and by cross-
validation (chain curve) fonp = 1.0. For 1o = 0.01 the evidence case is the full curve;
cross-validation the dotted curve. In the latter case the error bars are not shown for the sake of
clarity, but are of a similar magnitude.

1000 realizations of the data set for each valug pfire plotted in figure 6. These results
corroborate the results of the previous section in that they show the evidence procedure to
be sub-optimal. Further, they also reveal that cross-validation produces closer to optimal
performance. Figure &) shows that the resulting error from the cross-validatory estimate
correlates more strongly with the optimal generalization error than does that resulting from
the evidence estimate. In addition, figurd)pghows that the average fractional increase in
the generalization errok,, (1), is considerably larger for the evidence procedure than for
cross-validation.
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7. Conclusion

By considering the fluctuations around the average case we have shown that, in general, even
in the learnable linear case the evidence assignments do not result in optimal performance
despite thermodynamic, asymptotic and average case results to the contrary. We have
explored the evidence hyperparameter assignments in terms of first order corrections to
the thermodynamic limit and found qualitatively the same features in simulations of low
dimensional systems. In particular, we found that the evidence assignment of the weight
decay became ever further from the optimal as the number of training examples increased
and as the system size reduced. This is in stark contrast to the optimality of these
assignments suggested by the average case approach. Consideration of the generalization
performance reflected this sub-optimality. Furthermore, we found that the inconsistency of
the evidence weight decay assignment was due to asymptotically diverging fluctuations in
the optimal for large data sets. The performance witnessed for finite normalized number
of examples,a, showed that the asymptotic results are of little relevance to the data-
impoverished regime. In addition, our numerical studies indicate that for small learnable
linear systems leave-one-out cross-validation is closer than the evidence procedure to
producing optimal performance. This is perhaps not surprising as cross-validation attempts
directly to estimate the generalization error. However, we have found lower bounds on the
system size required to make the evidence procedure reliable and in such instances it might
still be a reasonable alternative to the computationally expensive cross-validation.

In future work we hope to explore the finite size effects associated with the cross-
validatory procedure and to compare these analytic results with those obtained here for the
evidence procedure. We also note the average case results for discrete mappings obtained by
Meir and Merhav (1994) on the consistency of hyperparameter assignment via minimization
of the stochastic complexity for a realizable case. Given our results and the analogy between
the evidence and the stochastic complexity it would also be interesting to examine finite
size effects in model selection based on this quantity.
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Appendix A.

Here we calculate the matrixin the largep limit using the following result for the inverse
of the patterned matri = (a — b)I + bJ (Graybill 1983)

cl= 1 (I - b J) (A1)
a—b a+ (k—1b

where J is the square matrix with all its entries 1. Now in the largdimit, using the
central limit theorem we can write

- 4
g7~ (7 = Vpo?) 1+ /pold (A-2)
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where the contribution from th&l term is negligible. Thus we can write,

N 1 1 .,
w0 e) ae mmo()  izi 0y

This result is in agreement with that for the inverse of the correlation matnixhich has
an inverse Wishart distribution. In the largelimit this also has a fluctuation of @/ p%/?)
around a mean oW /p (for example see Eaton (1983)).

Appendix B.

Here we show thatg;;) p(p) = G4vdij. Firstly, we can expang as

gy =M= ATPA + AT AR A - (B.1)
where
P
ij = i M)CM
No? = Y

A typical term is then
1 n+1
—(n+2) M1 M1 2 (2 Hn—1 _Hn—1  Mn  Hntl
A (Naz) I R R S A A (B.2)
X

In order to perform the average over the inputs we must pair all the indices. Ignoring the
pattern indicegu it is easy to see that any pairings of the lower indidges; . .. k,, j, will

lead toi = j. In order to have # j one index must remain unpaired and the resulting
average will vanish. Thus, on average the magiixis diagonal.

Appendix C.

In this appendix we show that quantities in equation (3.8) ai¥/®). Firstly, trI'T’

@) gz0 | 8w\ (@)Tgz, | S

where repeated indices imply summation. Now the average of this &\(ge"
uw = 1...p}H) can be re-expressed in terms of the average response funGtica

(trg/N) p(er:u=1..p}p, Which can be calculated using the method of Sollich (1994) or the
diagrammatic methods of Her&t al (1989). Thus, we can write

1
(T p(arp=t.pp = (@ = 1+ 228,G). (C.2)

Since G is O(1) then it is clear that{trI'T)pqgrp=1.,p IS O/N).  Similarly
(tr yTy)p({zM;M:L“,,]) can also be shown to be(QYN).
Finally we turn to the variance af,, over P({x* : = 1... p}). It is clear that

1
Var(a,,) = o)* Var (N (wO)Tgw0> . (C.3)
Now, due to the isotropic nature of the inputs it is clear that only the magnitude of the

teacher vectorw?® is important since one could always transform the inputs to rotate the
teacher to any particular direction. Thus, we can evaluate the variarce loy calculating
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the variance ofw®) Tgw®/N over a spherical distribution of weight vectard constrained
to beo,, in length. We then obtain

1 204 1
Var (N (wO)Tgw0> = (360 - (G +0 (N2> (C.4)

where, once again/i)o denotes the value df in the thermodynamic limit.

Appendix D.

Here, as an example we calculate the correlation betwgeandx,,,. From equation (4.1)
we find

1

Ahgy = ~ dothi {05105 f — 903 f 0p.f Jro.fio (D.1)
where we have defined
32f 950 f)
M=|( " AT D.2
(axa,3 foosf (©-2)

Now we are expanding about the thermodynamic limit, that is aragrathd 8. Since these
are the evidence optimal assignments in this ligpif andds f are of the order a/V/N).
However, the second derivatives do not vanish at this point arﬁgﬁcand dp0, f are A1).
Thus, expanding up to first order we obtain

1

1
Mhev == ot (C500F = @5 £33 f Voo + O (N) : (D.3)

Similarly, from equation (4.2), we can write

dr.€, ) <1)
Ahope = | — +0( = ). (D.4)
8 ( @2¢)0 ), 50 N

Thus, the covariance df,, and 2, is given by

(AoptAev) PD) = {(3§f)0<3)\f3xég)P(D) — (0805 f)0(0p f 0r€4) P(D) }r0.p0

~ (detM)o(82¢,)o

+0 (1\;2) . (D.5)

Now let us focus on one of these averages, nani@ly d,¢,) p(py. Firstly, using the fact
that (0, f|,,) ppy = 0 and(dr€,15,) ppy = O we can write this as the following:

(3, fd:€,) ppy = Covn'T'n, n"A'n) + Covin - ¢/, n - 2')

1
+BoCovay,, a; ) + O <N) . (D.6)
Here h’ = 9, h and Covh(D), k(D)) = (/’lk)P(D) — (h)P(D)<k)P(D)1 whilst the individual
terms, ', A, etc are defined in equations (3.1) and (3.2). Equation (D.6) can then be
expressed in terms of the response function as we saw in appendix C. The second term,
(aﬁfa)fg)p(p), is similar.
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