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Abstract. We show that in supervised learning from a supplied data set Bayesian model
selection, based on the evidence, does not optimize generalization performance even for
a learnable linear problem. This is demonstrated by examining the finite size effects in
hyperparameter assignment from the evidence procedure and the resultant generalization
performance. Our approach demonstrates the weakness of average case and asymptotic
analyses. Using simulations we corroborate our analytic results and examine an alternative
model selection criterion, namely cross-validation. This numerical study shows that the cross-
validation hyperparameter estimates correlate more strongly than those of the evidence with
optimal performance. However, we show that for a sufficiently large input dimension the
evidence procedure could provide a reliable alternative to the more computationally expensive
cross-validation.

1. Introduction

The problem of supervised learning, or learning from examples, has been much studied
using the techniques of statistical physics (see e.g. Krogh and Hertz 1992, Seunget al 1992,
Watkin et al 1993). A major advantage of such studies over the usual analytical approach in
the statistics community is that one can examine the situation where the fraction (α) of the
number of examples (p) to the number of free parameters(N) is finite. This contrasts with
the asymptotic (inα) treatments found in the statistics literature (see e.g. Plutowskiet al
1994, Stone 1977a, b, Shao 1993, Gelfand and Dey 1994). However, one drawback of the
traditional statistical physics approach is that it is based on the thermodynamic limit where
one allowsN and p to approach infinity whilst keepingα constant. Naturally this limits
the applicability of these theoretical results to the real world. In this paper we address the
problem by calculating first order corrections to the thermodynamic limit, that is we explore
finite size effects. Finite size effects in supervised learning have been studied previously
by Sollich (1994) and Barberet al (1995). Before discussing the main focus of our study
a brief introduction to the supervised learning paradigm is in order.

In this context one is presented with a set of dataD = {(yt (xµ), xµ) : µ = 1 . . . p}
consisting ofp example pairs of an otherwise unknownteacher mapping denoted by the
distributionP(yt |x). This notation accommodates, for example, teachers with deterministic
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outputs corrupted by noise. Furthermore, we assume that theNI dimensional input space
is sampled with probabilityP(x) and thus, the data set is generated with probability
P(D) = ∏p

µ=1 P(yt |xµ)P (xµ). The learning task is to use the dataD to set theN

parameters,w, of some model (or student), with outputys(x), such that itlearns to mimic
the underlying mapping as closely as possible on all inputs drawn from the distribution
P(x) (i.e. not simply those in the training setD). A popular measure of this performance is
the generalization errorwhich we define formally in section 2.2. We regard minimization
of this error, to which one does not have direct access, as the principal goal of the learning
or training process. The question is then how to conduct training so as to obtain the best
possible performance. One frequently used approach consists of minimizing a weighted
sum, βEw(D) + γC(w), of the quadratic error of the student on the examples,Ew(D),
and somecost function, C(w), which penalizes over-complex models. Providedγ is non-
zero this serves to alleviate the problem ofover-fitting of noisy data which can degrade
performance. It is the setting of the, so-called, hyperparametersβ and γ which we will
examine in this presentation.

If stochastic gradient descent is used to minimize the composite cost function,
βEw(D) + γC(w), one obtains a Gibbs distribution of students (i.e. the post training
distribution over the parametersw) (Seunget al 1992). If we wish to make a prediction on
a novel input using the average, or the maximum, of this distribution then this prediction
depends solely on the hyperparameters. Thus, the selection ofβ and γ can be regarded
as a model selection. In practice, since a decision must be based only on the training data
there are essentially two choices in terms of hyperparameter assignment. Firstly one can
attempt to estimate the generalization error (e.g. by cross-validation (Stone 1974)) and then
optimize this measure with respect to the hyperparameters. However, such an approach
can be computationally expensive. Secondly, one can optimize some other measure and
hope that the resulting assignments produce low generalization error. In particular, MacKay
(1992) advocates a quantity derived from Bayesian statistics, termed theevidence, as such
a measure. In the main we will explore this latter approach, defining the evidence in
section 2.1.

Model selection based on the evidence, in thelearnable case of a linear student
and teacher, has been studied by Bruce and Saad (1994) in the thermodynamic limit.
Their results show that optimizing the average, over all possible data sets, of the log
evidence simultaneously with respect to both hyperparameters optimizes the average
generalization error. In anunlearnable scenario Marion and Saad (1995) show that in
the thermodynamic limit hyperparameter assignment from the average log evidence does
not optimize performance.Self averagingis said to hold if the variance of relevant quantities
vanishes as the thermodynamic limit is approached. Since both these studies were conducted
in the thermodynamic limit and the self averaging property was assumed the analyses were
average case. In this paper we show that self averaging does indeed hold in relation to
model selection based on the evidence in the learnable linear case. However, we will
explore the optimality of the evidence in a system of finite size where the variance over
data sets is non-vanishing. Furthermore, rather than conduct an average case analysis we
seek to examine hyperparameter assignmentbased on individual data sets.

Our standpoint can be summarized as follows. In any real experiment a single set of
data is available for training and one seeks to optimize performance based on this data
set alone. The optimal policy (e.g. those hyperparameter assignments which minimize the
generalization error) will fluctuate from data set to data set, as will policies based on the
evidence and the cross-validation error. What is of interest is how close our chosen strategy
is to the optimal for the particular set of data in question. It is clear that average case analyses
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and measures of average performance do not reveal this. Thus, in section 2.2 we define data
dependent measures of performance and then subsequently explore the performance of the
evidence assignments in relation to them. In addition, we also briefly consider the average
case showing that such an analysis is in general highly misleading. However, we note that
in the thermodynamic limit, if self averaging holds, then both approaches are equivalent.

The remainder of the paper is organized as follows. In the next section we review the
evidence framework and the performance measures we will deal with. In section 3, we
write down the evidence and the performance measures for the learnable linear case. The
problem of consistency, that is the behaviour in the limit of large amounts of data, is then
explored along with an average case approach. In addition, employing some of the results
of Sollich (1994), we demonstrate that, for largeN , the variances, over data sets, of the
evidence and generalization error are O(1/N), in other words that self averaging holds.
In section 4 we avoid the average case approach examining hyperparameter assignment
from the evidence in relation to the optimal hyperparameters using finite size corrections
to the thermodynamic limit. We corroborate these results with numerical simulations of
small systems. The impact of these assignments on performance is studied in section 5.
In particular we estimate a lower bound on the system size necessary for the evidence
procedure to give reliable results. Also in terms of performance, we explore the relative
importance of fluctuations in the optimal and in the evidence procedure assignments. A
numerical study of a low dimensional system in section 6 allows a comparison of model
selection based on the cross-validation error and on the evidence. Finally we summarize
our main results in section 7.

2. Objective functions

2.1. The evidence

Since Ew(D) is the sum squared error then, if we assume that our data are corrupted
by Gaussian noise with variance 1/2β, the probability, or likelihood of the data (D)
being produced given the model parametersw and β is P(D|β, w) ∝ e−βEw(D). The
complexity cost can also be incorporated into this Bayesian scheme by assuming thea priori
probability of a rule is weighted against ‘complex’ rules,P(w|γ ) ∝ e−γC(w). Multiplying
the likelihood and the prior together we obtain the post-training or student distribution,
P(w|D, γ, β) ∝ e−βEw(D)−γC(w). As noted earlier, stochastic minimization of the composite
cost function also gives rise to this distribution. Indeed, Buntine and Weigend (1991) refer
to this process asBayesian backpropagation.

The evidence itself is the normalization constant for the post-training distribution

P(D|γ, β) =
∫ ∏

j

dwj P (D|β, w)P (w|γ ). (2.1)

That is, the probability of (or evidence for) the data set(D) given the hyperparametersβ
andγ . The evidence can thus be calculated from the data set,D, alone. Throughout this
paper we refer to theevidence procedureas the process of fixing the hyperparameters to
the values that simultaneously maximize the evidence for a given data set. Thus, although
the Bayesian framework outlined here envisages the hyperparameters as defining the whole
distribution of input–output pairs, the assignments from the evidence procedure will depend
on the data set at hand. Indeed, one could regard this procedure asempirical Bayes(see
e.g. Berger 1985) where, to some extent, the data are allowed to influence the choice of
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prior. In addition, we note that this is the way in which the evidence procedure is used in
practice (Mackay 1992).

2.2. The performance measures

In contrast to the evidence, the performance measures we review here cannot be calculated
from the data alone. Before proceeding we will introduce the notation〈f (z)〉P(z) to denote
the average of the quantityf (z) over the distributionP(z). However, we will use the
shorthand〈·〉w to mean the average over the post training distributionP(w|D, γ, β). Thus,
the average student output atx conditioned on the training data,D, is 〈ys(x)〉w.

As the principal performance measure we choose the expected squared difference over
the input distributionP(x) between the average student and the average teacher. That is,
the data-dependent generalization error

εg(D) = 〈(〈yt (x)〉P(yt |x) − 〈ys(x)〉w)2〉P(x). (2.2)

If we were toaverage over all possible data setsof fixed size then this would correspond
to the generalization error studied by Bruce and Saad (1994) and Krogh and Hertz (1992).
The question arises as to what one means by optimal procedure. As noted previously, in
the context of a real supervised learning experiment we are concerned with the performance
based on the actual data set available and not on the average performance. Thus, the optimal
policy is that which minimizes the data dependent generalization error and our focus will be
on the performance of the evidence procedure in relation to this. However, in section 3.1
we will consider an average case approach. Further, in section 5 we will also consider the
effect of defining the optimal hyperparameter assignment in terms of the average〈εg(D)〉P(D)

whilst using the data dependent evidence assignments. This will enable us to assess the
relative importance of fluctuations in the optimal and the evidence assignments.

Another feature we can consider is the variance of the student output,ys(x), over the
student distribution〈{ys(x)−〈ys(x)〉w}2〉w,P (x). Adapting the definition of Bruce and Saad
(1994) we define thedata dependentconsistency measure as

δc(D) = 〈{ys(x) − 〈ys(x)〉w}2〉w,P (x) − εg(D). (2.3)

We regardδc(D) = 0 as optimal since we can then estimate our expected error,εg(D),
from the variance of our student output, which in principle we can calculate if we could
estimate the input distribution. Indeed, Krogh and Vedelsby (1995) suggest using unlabelled
data to estimate the variance over the ensemble of students, albeit in a slightly different
context. Again note that we are principally concerned with the optimal procedure based on
the training data available and not on the average over all such sets.

3. Finite system size

In this section we consider a finite system sizeN examining the largep limit and showing
that in the learnable linear case under consideration in this paper the evidence procedure is
unbiased in a particular sense. We then explore the approach to the thermodynamic limit
demonstrating that the system is self averaging. However, initially we must calculate the
evidence and the performance measures.

Since the student is linear with outputy(x) = w · x/
√

N , the number of parameters
equals the dimension of input space,NI = N . We also assume that the teacher mapping is
linear, parametrized by the weight vectorw0, and corrupted by zero mean Gaussian noise of
varianceσ 2. Thus,P(yt |xµ) ∝ exp[−(y

µ
t −w0·xµ/

√
N)2/2σ 2]. Further, we assumeP(x)
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is N (0, σx)† and adopt weight decay as our regularization procedure, that isC(w) = wTw.
In this case we can explicitly calculate the evidence, or rather the normalized log of the
evidencef (D)= −1/N ln P(D|λ, β), where we have introduced the weight decay parameter
λ = γ /(βσ 2

x ). We can write the quantityf (D) which is analogous to a free energy as

f (D) = −1

2
ln

λ

π
− α

2
ln

β

π
+ 1

2
ln 2 − 1

2N
ln detg + y.n + β(λσ 2

x σ 2
w + nT0n + aev)

(3.1)

where

0µν = − (xµ)Tgxν

N2σ 2
x

+ δµν

N
yµ = 2λ(w0)Tgxµ

N
√

N

aev = −σ 2
x λ2(w0)Tgw0

N

and

g = (A + λI)−1 with A = 1

Nσ 2
x

p∑
µ=1

(xµ)T(xµ).

Hereµ andν index thep patterns,I is the identity matrix inN dimensions,Nσ 2
w = w0 ·w0

and thep dimensional noise vectorn has components drawn fromN (0, σ ). The termaev

does not fluctuate with the noise but only with the inputsxµ.
The generalization error and the consistency can be calculated fromf (D) by averaging

appropriate expressions over the input distributionP(x). The generalization error is given
by

εg(D) = nT∆n + z · n + aεg
(3.2)

where

1µν = − 1

N2σ 2
x

(xµ)T ∂g

∂λ
xν zµ = 2λ

N
√

N
(w0)T ∂g

∂λ
xν

and

aεg
= −λ2σ 2

x

N
(w0)T ∂g

∂λ
w0.

Finally, the consistency is

δc(D) = 1

2βN
tr g − εg(D). (3.3)

We note here that the generalization error depends only on the weight decay,λ, thus in
the remainder of this paper we refer to the optimal weight decayλopt (D) as that which
minimizes εg(D). Similarly, for fixed weight decay the optimal inverse temperature,
βopt (D), ensures thatδc(D) = 0 and thus that the variance of the student distribution is equal
to the generalization error. We denote the hyperparameters that simultaneously maximize
the evidence asλev(D) andβev(D). Thus, the termoptimal refers to the optimization of, or
with respect to, the performance measures whilstevidence optimalrefers to maximization
of the evidence.

† WhereN (x̄, σ ) denotes a normal distribution with meanx̄ and varianceσ 2.



5392 G Marion and D Saad

3.1. Consistency and unbiasedness

Firstly we consider the question of asymptotic consistency, that is, we examine the free
energy,f (D), and the generalization error in the limit of large numbers of data (i.e. as
p → ∞ with N fixed). This term is not to be confused with the consistency measure defined
above. Using the fact, shown in appendix A, that, for largep, gij = δijN/p + O(1/p3/2)

we can find the asymptotic evidence optimal hyperparameter assignments, namely

lim
p→∞ λev(D) = λ0 + O

(
1√
p

)
and lim

p→∞ βev(D) = β0 + O

(
1√
p

)
(3.4)

where the noise-to-signal ratioλ0 = σ 2/(σ 2
x σ 2

w) and β0 = 1/(2σ 2). In addition it can be
shown that, to first order inp−1, the generalization error is independent ofλ. As we shall
see later in the context of largeN this insensitivity of the generalization error to the value
of the weight decay is associated with a divergence in the variance of the optimal weight
decay as the number of examples grows large.

That the generalization error is independent of the weight decay for largep implies
that any scheme for settingλ, and in particular the evidence assignments, will achieve
optimal performance asymptotically (i.e. generalization error tends to zero irrespective of
λ). However, as we shall see in section 4 this does not imply that the evidence assignments
correspond to the optimal hyperparameters. Rather, it is a reflection of the fact that, for any
weight decay setting, our linear student ismean square consistent(see e.g. Stone 1977b)
when the teacher is also linear.

For this reason, instead of looking directly at the generalization error when assessing
the performance of the evidence assignments we will focus on the fractional increase in
generalization error from the optimal incurred by their use. That is on

κεg
(λev, D) ≡ εg(λev, D) − εg(λopt , D)

εg(λopt , D)
. (3.5)

Similarly the fractional error in estimating the generalization error from the variance of the
student distribution is

κδc
(λev, βev, D) ≡ δc(λev, βev, D)

εg(λev, D)
. (3.6)

In section 5 we examine the behaviour of bothκεg
(D) and κδc

(D) in the thermodynamic
limit.

However, before considering this regime we examine average case behaviour. Using
the result of appendix B it can be shown that

〈εg(D)〉P(D) = σ 2Gav + λ∂λGav(σ
2 − λσ 2

x σ 2
w) (3.7)

where the response functionGav = 〈tr g〉P(D) is unknown in general. The average
generalization error is clearly optimized byλ = λ0. Similarly, it can be shown that the
average consistency is optimized byβ = β0 whilst the resulting average free energy,
f = 〈f (D)〉P(D), is extremized byλ = λ0 and β = β0. This corresponds to the average
case result obtained for the thermodynamic limit by Bruce and Saad (94) but is validfor all
N andp. However, we are not able to explore the behaviour in more detail in this regime
since we can only calculateGav explicitly in the region of the thermodynamic limit. Thus,
the average case analysis shows that the evidence procedure is unbiased in the sense that
maximization of the average evidence optimizes average performance. However, we now
show that the fluctuations around this average optimum performance become increasingly
important as the system size,N , decreases.
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3.2. Self averaging

Using the result of Sollich (1994)† that the variance of trg/N is O(1/N2) one can calculate
the variance, over possible realizations of the data set, of the free energy,f (D) obtaining

Var(f (D)) = 2σ 4〈tr(00)〉P({xµ:µ=1...p}) + σ 2〈tr(yTy)〉P({xµ:µ=1...p})
+β2〈a2

ev〉P({xµ:µ=1...p}) − β2〈aev〉2
P({xµ:µ=1...p}). (3.8)

Here we have explicitly performed the noise average and the remaining average over
the input points is with respect toP({xµ : µ = 1 . . . p}). As shown in appendix C, it is
readily verified that〈tr(00)〉P({xµ:µ=1...p}), 〈tr(yTy)〉P({xµ:µ=1...p}) and the variance ofaev are
O(1/N) as we approach the thermodynamic limit. Thus, the variance of the free energy is
O(1/N), i.e. it is self averaging. Similarly, it can be shown that the generalization error
and consistency measure are also self averaging. This means that in the thermodynamic
limit the behaviour exhibited by the system for any particular data set will correspond to
the average case behaviour, that is the fluctuations around the average vanish. Thus, we
see that the average case analysis of Bruce and Saad (1994) corresponds to the case forany
particular data setbecause their results were obtained in the thermodynamic limit.

4. Data dependent hyperparameter assignment

Having now established, in addition to the self averaging, that the evidence procedure is
unbiased and consistent in a crude sense we now wish to examine the finite system behaviour
for data sets of finite size. This is clearly the regime of interest toreal world applications
since one is then in the business of optimizing performance based on the supplied data
set. To obtain the hyperparameter assignments made by the evidence procedure we must
simultaneously solve∂λf (D) = 0 and∂βf (D) = 0, where∂θf ≡ ∂f/∂θ . We can linearize
these equations, close to the thermodynamic limit, by expanding aroundλ = λ0 andβ = β0.
Doing so we obtain(

1λev

1βev

)
=

(
∂2
λf ∂β∂λf

∂λ∂βf ∂2
βf

)−1 (
∂λf

∂βf

)
λ0,β0

(4.1)

where the evidence optimal hyperparameters areλev(D) ≈ λ0 + 1λev(D) and βev(D) ≈
β0 + 1βev(D). In the notation adopted here the data dependence is implicit and the right-
hand side is evaluated atλ = λ0 andβ = β0.

Similarly, we can expand the true optimal hyperparameters about the thermodynamic
limit, obtainingλopt (D) ≈ λ0 + 1λopt (D) from the generalization error with

1λopt =
(

− ∂λεg

∂2
λεg

)
λ0,β0

. (4.2)

Since we regard the optimal consistency as zero (see section 2.2) we obtainβopt (D) ≈
β0 + 1βopt (D) where

1βopt (D) = (εg(D) − (εg(D))0) tr g

2N(εg(D))2
0

(4.3)

and the notation(h)0 denotes the value of the functionh in the thermodynamic limit.
The (co)-variances of these quantities are O(1/N); an example calculation is outlined

in appendix D. Figure 1 shows, to first order inN , the scaled variances‡ in the evidence

† Alternatively one can show this result using diagrammatic methods.
‡ i.e. N times the true variances
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Figure 1. The scaled variance in the optimal weight decay,Ṽar(λopt ), for various noise levels,
(i) λ0 = 0.04, (ii) λ0 = 0.25 and (iii)λ0 = 0.44, is shown in (a). Notice the linear divergence in
α which corresponds to our result in section 3.1 that, for sufficiently largep, the generalization
error is independent ofλ. The variance in the evidence optimal weight decay,̃Var(λev), is
shown, in (b), for the same noise levels. The O(1/α) decay of this quantity is a reflection of
the fact that for largep the evidence optimal weight decayλev(D) = λ0.

optimal weight decay,̃Var(λev), and that in the true optimal weight decay,̃Var(λopt ), for
various values ofλ0 . In the limit of largeα we find

Var(λev) ≈ 2λ2
0

αN
(1 + 2λ0) and Var(λopt ) ≈ λ0α

N
. (4.4)

The asymptotic O(1/α) decay of the former reflects the fact that, as discussed in section 3.1,
limα→∞ λev(D) = λ0. Similarly, the divergence of the latter is indicative of the insensitivity
of the generalization error to the weight decay for largeα. The divergence of both curves
for small α is of order O(1/(Nα)) and, in fact, forp = 1 it can be shown analytically
that these quantities are O(1). In the limit of zero noise we find that the variance ofλev

diverges forα 6 1 and is zero forα > 1. However, in this limit of zero noise the variance
of the optimal weight decay tends to zero irrespective ofα. Since, at least to first order,
the average of1λopt is zero this means that optimal weight decay is zero in the limit of no
noise. Thus, if there is no noise the evidence procedure can only set the weight decay with
confidence forα > 1, whilst the optimal policy is to accept the data completely for allα

(i.e. λ0 = 0).
A second feature we consider is the average separation between the evidence assignment

of the weight decay and the optimal,

‖λev − λopt‖2 ≡ 〈(λev(D) − λopt (D))2〉P(D). (4.5)

As one would expect, this average separation increases with the noise. However, in the
limit of zero noise whilst‖λev −λopt‖2 is zero forα > 1 we find that it diverges forα < 1.
This divergence is linked to the divergence in the evidence assignment of the weight decay
discussed in the preceding paragraph. In the limit of large data sets the average distance
between the optimal weight decay and the evidence assignment diverges linearly, indeed
for largeα we find that

‖λev − λopt‖2 ≈ Var(λopt ). (4.6)

Thus, we see that this divergence is caused by the fact that, whilst the evidence assignment
becomes ever closer toλ0, the variance, over data sets, of the optimal regularization
parameter diverges.
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Figure 2. The correlation between the optimal weight decay and the evidence optimal weight
decayC(λev, λopt ) is shown, in (a), for (i) λ0 → 0.0, (ii) λ0 = 0.01, (iii) λ0 = 1 and (iv)λ0 = 4.
(b) shows the correlation between the optimal inverse temperatureβopt and the evidence optimal
βev for (i) λ0 → 0.0, (ii) λ0 = 0.025, (iii) λ0 = 1 and (iv)λ0 = 16.

Finally we examine the normalized correlation betweenλev(D) andλopt (D), C(λev, λopt )

and that betweenβev(D) and βopt (D), C(βev, βopt ) to order O(1) as shown in figure 2.
The normalized correlation between two fluctuating quantitiesh(D) and k(D) is written
C(h(D), k(D)) = (〈hk〉P(D) − 〈h〉P(D)〈k〉P(D))/(Var(h) Var(k))1/2. For smallα the non-
monotonic behaviour ofC(λev, λopt ) is a reflection of the fact, discussed above, that the
variance in the evidence assignment diverges for small noise whilst that of the optimal
tends to zero. As the noise level increases Var(λev) reduces and Var(λopt ) increases causing
the correlation to first increase and then decrease as a function ofλ0. For zero noise
C(λev, λopt ) tends to zero for allα since the optimal parameter does not fluctuate in this
limit. The behaviour ofC(βev, βopt ) is more straightforward. For smallα this correlation
reduces monotonically with increasingλ0. In the limit of zero noiseC(βev, βopt ) = 1 for
α < 1 and is zero otherwise. The behaviour in the regionα < 1, where the variance of
both βopt andβev diverge for small noise level is indicative of the fact that, for this case,
in the thermodynamic limit neither the consistency nor the evidence is dependent on the
inverse temperature,β.

Finally, in the largeα limit we have

lim
α→∞ C(λev, λopt ) = −

√
2λ0√

2λ0 + 1
(4.7)

and

lim
α→∞ C(βev, βopt ) ≈ 4λ2

0α
−7/2. (4.8)

Thus, for large noise the asymptotic correlation between the evidence and the optimal weight
decays tends to−1 whilst for small noise it tends to zero. In contrastC(βev, βopt ) invariably
tends to zero. In general then, to order O(1/N) the evidence assignments correlate rather
poorly with the optimal assignments.

When defining the evidence procedure, we could have chosen to optimize the evidence
with respect to each of the hyperparameters whilst holding the other fixed rather than
simultaneously w.r.t. both. In the thermodynamic limit, in the linear case, we find that the
evidence assignments are optimal only in the case where we simultaneously minimize the
free energy w.r.t. to both hyperparameters (Bruce and Saad 1994). This was the motivation
for studying the latter case here. However, we briefly note that if we fixβev = β0 and
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optimize the evidence w.r.t. the weight decay only we are free to expandλev(D) aboutλ0

as before. In this case we find that, in analogy to the thermodynamic limit, this assignment
is less correlated with the optimal than in the situation we have been discussing where we
optimize the evidence simultaneously with respect to both hyperparameters.

To summarize, we note that our results in this section are in stark contrast to the average
case result of section 3.1 and reveal the inadequacies of the latter approach. In addition,
despite mean square consistency the evidence assignments are in fact far from the optimal
values both asymptotically and for finiteα. Indeed, in section 5 we will see that this has a
deleterious effect on performance.

4.1. Simulations

To qualitatively corroborate our results we performed simulations of one-dimensional linear
perceptron students and teachers. In these simulations we generated random data sets and
found the evidence procedure and the true optimal hyperparameter assignments. Then
by averaging over many such data sets we calculated the variances and correlations of
these parameter assignments. Some results from these simulations are shown in figure 3.
Figure 3(a) shows the variance ofλopt and of λev versus the number of examples,p, in
this case. They show qualitative agreement with the largeN results of figure 1, with the
variance ofλopt diverging linearly for largep whilst that ofλev falls off with p. Figure 3(b)
shows the correlation betweenλopt andλev. These simulation results demonstrate that there
is a region of positive correlation for a small number of examples and that as the noise
reduces, so does the level of the (anti)- correlation.

Figure 3. One-dimensional simulation results: (a) shows the variance in the optimal weight
decayλopt (full curve) and that in evidence optimalλev (chain curve) both forλ0 = 1.0. The
latter curve has been scaled by a factor of 0.01 for ease of presentation and standard error bars
are shown. Qualitatively, both curves show similar characteristics to the theoretical curves of
figure 1. For largerp the variance ofλopt continues to diverge linearly. In (b), the correlation
between the optimal weight decay and the evidence optimal weight decayC(λev, λopt ) is shown,
for λ0 = 0.01 (full curve) andλ0 = 1 (chain curve).

A better understanding of this behaviour is to be had by examining the histogrammed
samples, over different data sets, of the evidence and the optimal assignments. For a small
number of examples,p, the distribution of evidence assignments looks qualitatively the same
as that of the optimal assignments. Thus, there are many occasions whereλev andλopt are
coincident and the correlation between them is positive although as we can see in figure 3
the variances in the assignments are large. Asp grows the evidence assignments begin to
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cluster aroundλ0 as by our consistency results they must for largep. The mean ofλev thus
tends toλ0 and its variance decays in accord with our thermodynamic results. However,
asp grows the distribution of the optimal assignment remains similar to its smallp form
but the variance inλopt becomes larger also in accord with our theoretical results. Given
the differences between these two distributions it is hardly surprising that the correlation
between the two corresponding hyperparameter assignments is not positive in this region.

5. Effects on performance

We now examine the effects on performance of these sub-optimal hyperparameter
assignments. Firstly, for the generalization error to order O(1/

√
N) the optimal

performance,εg(λopt , D), and that resulting from use of the evidence procedure,εg(λev, D),
are the same. However, to order O(1/N) they differ, thus we can write the correlation
between them, somewhat suggestively, as 1− O(1/N). Unfortunately, we are unable to
calculate this correlation to O(1/N). Therefore, we examine the increase in error invoked
by use of the evidence procedure

1ε(D) ≡ εg(λev, D) − εg(λopt , D)

= 1λev∂λεg + 1
21λ2

ev∂
2
λεg + 1

21λ2
opt ∂

2
λεg + O

(
1

N2

)
(5.1)

where the quantities in the second line are evaluated atλ0. The degradation in performance,
1ε(D), is a fluctuating quantity (over data sets) and in order to estimate its typical magnitude
we calculate its average and variance. The average degradation in performance can be
written in terms of the average separation of the evidence weight decay assignment and the
optimal, as defined in equation (4.5). Thus, we find that

〈1ε(D)〉P(D) = 1
2(∂2

λεg)0‖λev − λopt‖2 + O

(
1

N2

)
. (5.2)

Whilst the calculation of this average is then straightforward, that of the variance is more
tricky. The variance is O(1/N2) and thus we would have to calculate the variance of
the response function trg/N to this order. Instead, we simply calculate the variance over
the noise ignoring that over the inputs. Clearly, this will give alower boundon the true
variance. We also expect this to become increasingly tight asα grows since for zero noise
the fluctuations generated by the input variables vanish forα > 1. Thus, to O(1/N), a
lower bound on thetypical error invoked by use of the evidence procedure is the average
degradation of equation (5.2) plus the square root of its variance over the noise.

In figure 4, to first order, we plot this typical error,〈1ε〉P(D) + (Var(1ε))1/2, scaled
by N as a fraction of the optimal generalization error. This quantity, which is a scaled
estimate of the fractional degradation defined in equation (3.5), is denotedκ̃

typ
εg

(λev). As
before the notatioñh denotes the functionh scaled byN . Figure 4 shows that use of
the evidence procedure results in a fractional degradation of significant magnitude for finite
system size,N , and number of examples,α. This is true of the degradation itself and clearly
demonstrates the failings of the average case approach which, as we have seen, suggests
the evidence assignments are optimal in this case. Figure 4 allows one to determine a lower
bound on the typical fractional degradation for any system size. For example, forN = 100,
we see that the fractional errors shown in figure 4 will range between 0.01 and 0.29 and
for a larger-sized system the evidence procedure results in closer to optimal behaviour. In
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Figure 4. Scaled estimate of the fractional errorκεg : for a system size ofN dividing κ̃
typ
εg (λev)

by N gives an estimate of the true fractional increase in error above the optimal incurred by
using the evidence procedure.̃κtyp

εg (λev) diverges asλ0 → ∞ and asα → 0. For largeα

κ̃
typ
εg (λev) tends to 1/N and for small noise it diverges forα < 1 (see text).

the largeα limit we find that, for theaveragefractional degradation

lim
α→∞〈κεg

(λev)〉P(D) = 1

N
+ 2(λ0 + 1)

Nα
+ O

(
1

Nα2

)
. (5.3)

Note that the average relative degradation,〈κεg
(λev)〉P(D), does not decay withα despite the

fact that the average degradation in performance,〈1ε(D)〉P(D), is itself O(1/αN). Thus,
although the evidence assignments are consistent in a mean square sense they are never
optimal even asymptotically. Furthermore, given the large fractional degradation associated
with the evidence for finiteα andN (shown in figure 4) even this mean square consistency is
of questionable relevance in practice. If we consider the fluctuations, induced by the noise,
in the relative degradation we find that asymptotically they do not contribute, being of order
O(1/αN). Indeed, the fluctuations do not, in general, qualitatively change the behaviour of
the average fractional error,〈κεg

(λev)〉P(D), and the relative size of the fluctuation term as a
fraction of the typical error is most important for a mid-rangeα ≈ 2.

As the noise level increases so does〈κεg
(λev)〉P(D) which is a reflection of the increasing

uncertainty inλev as shown in figure 1(b). In the zero noise limit, since we consider only the
variance induced by the noise, the fluctuation term vanishes in both the degradation and the
fractional degradation, for allα. However, whilst the average degradation,〈1ε(λev)〉P(D),
vanishes forα > 1 it diverges forα < 1. Thus, for zero noise the evidence procedure
gives optimal performance forα > 1 but very poor performance forα < 1. The fractional
degradation is more revealing in this limit, as we find that〈κεg

(λev)〉P(D) diverges when the
normalized number of examples,α is less than one, but forα > 1 we find

lim
λ0→0

〈κεg
(λev)〉P(D) = 1

N

α + 1

α − 1
(5.4)

showing that, for small noise, the evidence does not give optimal performance. We can
understand this behaviour if we consider the evidence weight decay assignments in the case
of zero noise. In the regionα < 1 the variance ofλev(D) diverges asλ0 → 0 and thus
λev(D) is ill-defined. This mirrors the phase transition found in the thermodynamic limit
by Bruce and Saad (1994). Furthermore, as we noted in the previous section, in the current
scenario we find that forα > 1 the variancẽVar(λev) → 0 in the limit of no noise and thus
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the evidence weight decay assignment is zero (i.e.λev = λ0 + 1λev → λ0 → 0). When
there is no noise on the examples the optimal weight decay,λopt , is zero for allα since
there is no danger of over-fitting. Thus, the average degradation,〈1ε〉P(D), and the average
separation between the evidence and optimal weight decays diverge forα < 1 and are zero
otherwise. This reflects the fact that forα < 1 we do not even have enough examples to
fix all the weights and certainly do not have enough to set the weight decay. However, for
α > 1 the evidence assignment is optimal. Thus, in the noiseless limit the performance of
the evidence is optimal forα > 1. However, this is not reflected in the average fractional
degradation, equation (5.4), because the optimal error approaches zero at thesame rateas
the degradation in performance. In other words for small noise level andα > 1 the evidence
assignments are still sub optimal.

We have argued that the optimal policy is a function of the actual data set available and to
date we have largely focused on this definition. However, we now briefly discuss the effect
of re-defining the optimal policy as that which minimizes theaveragegeneralization error.
As we saw in section 3.1 this is achieved by choosing the weight decayλ = λ0. Thus, in
this case the optimal weight decay does not fluctuate over data sets and the error associated
with the evidence assignments will be due to fluctuations inλev(D) alone. Furthermore,
we have already seen that asymptotically the evidence assignment tends toλ0. It is thus
not surprising that we find the average relative degradation associated with the evidence
assignment when compared with the new ‘optimal’ generalization error,〈εg(λ0, D)〉P(D), is
to first order inα−1 O(1/Nα) and in fact,〈κεg

(λev)〉P(D) ≈ 4λ0/(Nα). Thus, in this case
the evidence assignment is asymptotically optimal and it is clear that the fluctuations in
the optimal weight decay caused the asymptotic inconsistency reflected in equation (5.3).
In contrast, for this new optimal, at smallα we find qualitatively similar behaviour in the
fractional degradation to that displayed in figure 4. Moreover, fluctuations in the optimal
are relatively unimportant, in terms of performance loss, for smallα but grow rapidly with
the number of examples, dominating in the asymptotic regime as we have seen. These
results show that an average case definition of optimal is misleading especially in the data-
dominated regime.

Finally, we consider the error incurred in estimating the generalization error from the
variance of the post training distribution of students. If we use the evidence assignment of
the inverse temperature,βev(D), then our error will be O(1/

√
N); an order of magnitude

larger than the degradation,1ε(λev, D), itself. On average this vanishes but we can estimate
the typical size of the fluctuation by calculating the square root of its variance. Dividing
this by the true generalization error gives an estimate of the fractional error,κδc

, defined in
equation (3.6). To first order this quantity, scaled by

√
N and denoted bỹκtyp

δc
, is plotted

in figure 5. In general,̃κtyp

δc
is much larger thañκtyp

εg
. For λ0 → 0 κ̃

typ

δc
diverges whereas

κ̃
typ

δc
→ 0 as λ0 increases. That is, as the noise level increases the generalization error

becomes larger and we are able to estimate it, using the consistency criterion, to a greater
degree of accuracy when it is larger.

6. Comparison with cross-validation

Given that the evidence procedure is sub-optimal, it is natural to ask if another model
selection criteria could do better. Here we compare the evidence procedure with leave-one-
out cross-validation (see e.g. Stone 1974) using simulations of our one-dimensional system.
That is, we set the weight decay using the cross-validatory estimate and the evidence estimate
and compare the resulting generalization error to the optimal. The results, averaged over
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Figure 5. Scaled estimate of the fractional errorκδc : for a system size ofN dividing κ̃
typ
δc

by

N1/2 gives an estimate of the true fractional error in estimating the generalization error from
the variance of the student distribution.κ̃

typ
δc

diverges asα → 0 and asλ0 → 0.

Figure 6. One-dimensional simulation results: (a) shows the correlation between the optimal
generalization error and those obtained using the evidence (full curve) and cross-validation
(chain curve) withλ0 = 1.0. (b) shows the fractional increase in generalization error
κεg (λ) = (εg(λ) − εg(λopt ))/εg(λopt ). λ is set by the evidence (broken curve) and by cross-
validation (chain curve) forλ0 = 1.0. For λ0 = 0.01 the evidence case is the full curve;
cross-validation the dotted curve. In the latter case the error bars are not shown for the sake of
clarity, but are of a similar magnitude.

1000 realizations of the data set for each value ofp, are plotted in figure 6. These results
corroborate the results of the previous section in that they show the evidence procedure to
be sub-optimal. Further, they also reveal that cross-validation produces closer to optimal
performance. Figure 6(a) shows that the resulting error from the cross-validatory estimate
correlates more strongly with the optimal generalization error than does that resulting from
the evidence estimate. In addition, figure 6(b) shows that the average fractional increase in
the generalization error,κεg

(λ), is considerably larger for the evidence procedure than for
cross-validation.
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7. Conclusion

By considering the fluctuations around the average case we have shown that, in general, even
in the learnable linear case the evidence assignments do not result in optimal performance
despite thermodynamic, asymptotic and average case results to the contrary. We have
explored the evidence hyperparameter assignments in terms of first order corrections to
the thermodynamic limit and found qualitatively the same features in simulations of low
dimensional systems. In particular, we found that the evidence assignment of the weight
decay became ever further from the optimal as the number of training examples increased
and as the system size reduced. This is in stark contrast to the optimality of these
assignments suggested by the average case approach. Consideration of the generalization
performance reflected this sub-optimality. Furthermore, we found that the inconsistency of
the evidence weight decay assignment was due to asymptotically diverging fluctuations in
the optimal for large data sets. The performance witnessed for finite normalized number
of examples,α, showed that the asymptotic results are of little relevance to the data-
impoverished regime. In addition, our numerical studies indicate that for small learnable
linear systems leave-one-out cross-validation is closer than the evidence procedure to
producing optimal performance. This is perhaps not surprising as cross-validation attempts
directly to estimate the generalization error. However, we have found lower bounds on the
system size required to make the evidence procedure reliable and in such instances it might
still be a reasonable alternative to the computationally expensive cross-validation.

In future work we hope to explore the finite size effects associated with the cross-
validatory procedure and to compare these analytic results with those obtained here for the
evidence procedure. We also note the average case results for discrete mappings obtained by
Meir and Merhav (1994) on the consistency of hyperparameter assignment via minimization
of the stochastic complexity for a realizable case. Given our results and the analogy between
the evidence and the stochastic complexity it would also be interesting to examine finite
size effects in model selection based on this quantity.
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Appendix A.

Here we calculate the matrixg in the largep limit using the following result for the inverse
of the patterned matrixC = (a − b)I + bJ (Graybill 1983)

C−1 = 1

a − b

(
I − b

a + (k − 1)b
J
)

(A.1)

where J is the square matrix with all its entries 1. Now in the largep limit, using the
central limit theorem we can write

g−1 ≈
( p

N
− √

pσ 2
x

)
I + √

pσ 2
x J (A.2)
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where the contribution from theλI term is negligible. Thus we can write,

gii ≈ N

p
+ O

(
1

p3/2

)
and gij ≈ O

(
1

p3/2

)
i 6= j. (A.3)

This result is in agreement with that for the inverse of the correlation matrixA which has
an inverse Wishart distribution. In the largep limit this also has a fluctuation of O(1/p3/2)

around a mean ofN/p (for example see Eaton (1983)).

Appendix B.

Here we show that〈gij 〉P(D) = Gavδij . Firstly, we can expandg as

gij = λ−1 − λ−2Aij + λ−3AikAkj · · · (B.1)

where

Aij = 1

Nσ 2
x

p∑
µ=1

x
µ

i x
µ

j .

A typical term is then

λ−(n+2)

(
1

Nσ 2
x

)n+1

x
µ1
i x

µ1
k1

x
µ2
k1

x
µ2
k2

· · · xµn−1
kn−1

x
µn−1
kn

x
µn

kn
x

µn+1
j . (B.2)

In order to perform the average over the inputs we must pair all the indices. Ignoring the
pattern indicesµ it is easy to see that any pairings of the lower indices,i, k1 . . . kn, j , will
lead to i = j . In order to havei 6= j one index must remain unpaired and the resulting
average will vanish. Thus, on average the matrixgij is diagonal.

Appendix C.

In this appendix we show that quantities in equation (3.8) are O(1/N). Firstly, tr00

tr 00 =
(

(xµ)Tgxν

N2σ 2
x

+ δµν

N

) (
(xν)

Tgxµ

N2σ 2
x

+ δνµ

N

)
(C.1)

where repeated indices imply summation. Now the average of this overP({xµ :
µ = 1 . . . p}) can be re-expressed in terms of the average response functionG =
〈tr g/N〉P({xµ:µ=1...p}), which can be calculated using the method of Sollich (1994) or the
diagrammatic methods of Hertzet al (1989). Thus, we can write

〈tr 00〉P({xµ:µ=1...p}) = 1

N
(α − 1 + λ2∂λG). (C.2)

Since G is O(1) then it is clear that〈tr 00〉P({xµ:µ=1...p}) is O(1/N). Similarly
〈tr yTy〉P({xµ:µ=1...p}) can also be shown to be O(1/N).

Finally we turn to the variance ofaev over P({xµ : µ = 1 . . . p}). It is clear that

Var(aev) = σ 4
x λ4 Var

(
1

N
(w0)Tgw0

)
. (C.3)

Now, due to the isotropic nature of the inputs it is clear that only the magnitude of the
teacher vectorw0 is important since one could always transform the inputs to rotate the
teacher to any particular direction. Thus, we can evaluate the variance ofaev by calculating
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the variance of(w0)Tgw0/N over a spherical distribution of weight vectorsw0 constrained
to beσw in length. We then obtain

Var

(
1

N
(w0)Tgw0

)
= 2σ 4

w

N
((∂λG)0 − (G)2

0) + O

(
1

N2

)
(C.4)

where, once again,(h)0 denotes the value ofh in the thermodynamic limit.

Appendix D.

Here, as an example we calculate the correlation betweenλev andλopt . From equation (4.1)
we find

1λev = − 1

detM
{∂2

βf ∂λf − ∂β∂λf ∂βf }λ0,β0 (D.1)

where we have defined

M =
(

∂2
λf ∂β∂λf

∂λ∂βf ∂2
βf

)
. (D.2)

Now we are expanding about the thermodynamic limit, that is aroundλ0 andβ0. Since these
are the evidence optimal assignments in this limit∂λf and∂βf are of the order O(1/

√
N).

However, the second derivatives do not vanish at this point and so∂2
βf and∂β∂λf are O(1).

Thus, expanding up to first order we obtain

1λev = − 1

(detM)0
{(∂2

βf )0∂λf − (∂β∂λf )0∂βf }λ0,β0 + O

(
1

N

)
. (D.3)

Similarly, from equation (4.2), we can write

1λopt =
(

− ∂λεg

(∂2
λεg)0

)
λ0,β0

+ O

(
1

N

)
. (D.4)

Thus, the covariance ofλev andλopt is given by

〈λoptλev〉P(D) = − 1

(detM)0(∂
2
λεg)0

{(∂2
βf )0〈∂λf ∂λεg〉P(D) − (∂β∂λf )0〈∂βf ∂λεg〉P(D)}λ0,β0

+O

(
1

N3/2

)
. (D.5)

Now let us focus on one of these averages, namely〈∂λf ∂λεg〉P(D). Firstly, using the fact
that 〈∂λf |λ0〉P(D) = 0 and〈∂λεg|λ0〉P(D) = 0 we can write this as the following:

〈∂λf ∂λεg〉P(D) = Cov(nT0′n, nT∆′n) + Cov(n · y′, n · z′)

+β0 Cov(a′
ev, a

′
εg

) + O

(
1

N

)
. (D.6)

Here h′ = ∂λh and Cov(h(D), k(D)) = 〈hk〉P(D) − 〈h〉P(D)〈k〉P(D), whilst the individual
terms, 0, 1, etc are defined in equations (3.1) and (3.2). Equation (D.6) can then be
expressed in terms of the response function as we saw in appendix C. The second term,
〈∂βf ∂λεg〉P(D), is similar.
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